Def 28.5 pg. 228 Darboux integrable

For 𝐼=[π‘Ž,𝑏] and 𝑓:πΌβŸΆβ„ be a bounded function. Then 𝑓 is Darboux integrable if (βˆƒπœ)(βˆ€πœ€>0)βˆ‘πœπ‘“βˆ’βˆ‘πœπ‘“<πœ€

Def 28.1 Riemann integrable

(βˆƒπΌ)(βˆ€πœ€>0)(βˆƒπ›Ώ)(βˆƒπœŽ)(βˆƒπœ‰)|𝜎|<π›ΏβŸΉ|𝑅(𝑓,πœ‰)βˆ’πΌ|<πœ€

where 𝜎 is a partition, 𝛿 is the max mesh size, and πœ‰ is a set with points from every sub-interval in 𝜎, 𝑅 is Riemann Sum.

Thm 28.4

Darboux integrable imply Riemann integrable

Thm 29.5

𝑓 continue imply 𝑓 integrable

Lemma 10.4

let Ξ¦ be Lipschitz and 𝑓 integrable, we have Ξ¦βš¬π‘“ integrable.
Also Ξ”πœŽ(Ξ¦βš¬π‘“)β‰€πΏΞ”πœŽ(𝑓)

Thm 31.1 Lebesgue’s Criterion for Riemann Integrability

𝑓 is bounded and βˆƒπ‘˜βŠ†[π‘Ž,𝑏], the following are equivalent:

  1. 𝑓 is Riemann integrable on π‘˜
  2. the set of discontinuities of 𝑓 on π‘˜ has Lebesgue measure zero
    Basically, it means, 𝑓 is only discontinue in measure zero set, and continue otherwise.

Thm 31.2

πœ‘ is continue, 𝑓 integrable ⟹ πœ‘βš¬π‘“ integrable

OH 35.1

Thm A

πœ‘ Lipschitz and 𝑓 integrable ⟹ πœ‘βš¬π‘“ integrable

Thm B

πœ‘ continue and 𝑓 integrable ⟹ πœ‘βš¬π‘“ integrable

Proof

By Thm C, we can say there exists 𝑆 has Lebesgue Zero Measure.

Thm C

𝑓 integrable ⟺ (βˆƒπ‘†) has Lebesgue Zero Measure