Def 29.3 ∫abf(x)dx=I=klim∑τkf=limR(f,ξ) if f is integrable Prop 29.4 ∀σ ∑σf≤∫abf(x)dx≤∑σf ∣∫abf(x)dx∣≤∑σ∣f∣ ∣∫abf(x)dx∣≤∫ab∣f(x)∣dx Thm 30.3 for f, g is integrable ∫ab(f(t)+λg(t))dt=∫abf(t)dt+λ∫abg(t)dt ∫abf(t)dt=∫acf(t)dt+∫cbf(t)dt Thm 30.5 ∣∫abfdt∣≤∫ab∣f∣dt proved by considering Φ(y)=∣y∣ as a Lipschitz function. Def 31.5 By Oresme ∫01xmdx=m+11 Prop 41.3 ∫abf(s)ds≤(b−a)ssupf(s)