Def 29.3

𝑏𝑎𝑓(𝑥)𝑑𝑥=𝐼=lim𝑘𝜏𝑘𝑓=lim𝑅(𝑓,𝜉)

if 𝑓 is integrable

Prop 29.4

𝜎

  1. 𝜎𝑓𝑏𝑎𝑓(𝑥)𝑑𝑥𝜎𝑓
  2. |𝑏𝑎𝑓(𝑥)𝑑𝑥|𝜎|𝑓|
  3. |𝑏𝑎𝑓(𝑥)𝑑𝑥|𝑏𝑎|𝑓(𝑥)|𝑑𝑥

Thm 30.3

for 𝑓, 𝑔 is integrable

  1. 𝑏𝑎(𝑓(𝑡)+𝜆𝑔(𝑡))𝑑𝑡=𝑏𝑎𝑓(𝑡)𝑑𝑡+𝜆𝑏𝑎𝑔(𝑡)𝑑𝑡
  2. 𝑏𝑎𝑓(𝑡)𝑑𝑡=𝑐𝑎𝑓(𝑡)𝑑𝑡+𝑏𝑐𝑓(𝑡)𝑑𝑡

Thm 30.5

|𝑏𝑎𝑓𝑑𝑡|𝑏𝑎|𝑓|𝑑𝑡

proved by considering Φ(𝑦)=|𝑦| as a Lipschitz function.

Def 31.5

By Oresme

10𝑥𝑚𝑑𝑥=1𝑚+1

Prop 41.3

𝑏𝑎𝑓(𝑠)𝑑𝑠(𝑏𝑎)sup𝑠𝑓(𝑠)