Def pg. 243 A sequence of function (𝑓𝑛) on 𝐴⊆ℝ to ℝ converges uniformly on 𝐴0⊆𝐴 to a function 𝑓:𝐴0⟶ℝ if for all 𝑥∈𝐴0 (∀𝜀>0)(∃𝐾(𝜀))(∀𝑛≥𝐾(𝜀))|𝑓𝑛(𝑥)−𝑓(𝑥)|<𝜀 Claim 18.2 lim𝑛⟶∞𝑑∞(𝑓𝑛,𝑓)=0