Def pg. 243 A sequence of function (fn) on A⊆R to R converges uniformly on A0⊆A to a function f:A0⟶R if for all x∈A0 (∀ε>0)(∃K(ε))(∀n≥K(ε))∣fn(x)−f(x)∣<ε Claim 18.2 limn⟶∞d∞(fn,f)=0