For

𝑓(𝑧)=1(𝑧𝑖)(𝑧+𝑖)

consider 𝑓(𝑧)=𝐴𝑧𝑖+𝐵𝑧+𝑖 and solve 𝐴,𝐵
And it’s 𝑓(𝑧)=𝑖/2𝑧𝑖+𝑖/2𝑧+𝑖.
Then do Power theory:

𝑓(𝑧)=12(11(𝑧𝑖)+11𝑧𝑖)=12[𝑘=0(𝑧𝑖)𝑘+𝑘=0(𝑧𝑖)𝑘]=𝑘=0𝑧2𝑘𝑖2𝑘