Radius for f(x)=∑k2x2 R=limksupk∣k2∣⟹R=1 because kk2≥1⟹R≥1 R≤1 because (1+ε)k≥(1+εk)⟹(∃k0)(∀k≥k0)(1+ε)k≥(1+kε)≥k2 □ Riemann integral Calculate integral of lima⟶1∑cos(a2j)aj(1−a) so mesh is like: x0=1,x1=a,xj=aj,xN=0 R∞(f)=∑j=0∞f(aj)(xj−xj+1) where xj−xj+1=aj(1−a) take xj=aj=ξj so R∞(f,ξ)=∫01f(t)dt=∫01cos(x)dx □