Basic recall
- sin′(x)=cos(x)
- cos′(x)=−sin(x)
- sin(0)=0,cos(0)=1
- sin(2π)=1,cos(2π)=0
- sin(−x)=−sin(x)
Def 41.1
π=sup{x∣∀0<y<x,cos(y)=∞}
Lemma 41.2
∣sin(x)∣≤∣x∣
proved by Thm 32.1 Fundamental Theorem and (∀t)cos(t)≤1 with
sin(x)−sin(0)=∫0xsin′(t)dt=∫0xcos(t)dt≤x≤∣x∣
Then
−sin(x)=sin(−x)≤∣x∣
□
1−cos(x)=∫0xsin(t)dt