Basic recall sin′(𝑥)=cos(𝑥) cos′(𝑥)=−sin(𝑥) sin(0)=0,cos(0)=1 sin(𝜋2)=1,cos(𝜋2)=0 sin(−𝑥)=−sin(𝑥) Def 41.1 𝜋=sup{𝑥∣∀0<𝑦<𝑥,cos(𝑦)=∞} Lemma 41.2 |sin(𝑥)|≤|𝑥| proved by Thm 32.1 Fundamental Theorem and (∀𝑡)cos(𝑡)≤1 with sin(𝑥)−sin(0)=∫𝑥0sin′(𝑡)𝑑𝑡=∫𝑥0cos(𝑡)𝑑𝑡≤𝑥≤|𝑥| Then −sin(𝑥)=sin(−𝑥)≤|𝑥| □ Remark 41.3 1−cos(𝑥)=∫𝑥0sin(𝑡)𝑑𝑡