Def Def 28.1 R(f,ξ)=j∑∣∣ξ∣∣Δjf(ξj) supRσ(f,ξ)=∑σf Where ∑ is in Darboux upper sum Def 30.1 n⟶∞limn1j=1∑nf(a+jnb−a)=∫abf(x)dx Or limn→∞∑i=0n−1f(xi)(xi+1−xi)=∫abf(x)dx Basically we just need the parition be small enough. Lemma 30.2 R(f+λg,ξ)=R(f,ξ)+λR(g,ξ) for [a,b]=[a,c]∪[c,b] σ=σ[a,c]∪σ[c,d] where it’s partition Δσ[a,c]∪{c}+Δσ[c,b]∪{c}≤2Δσ Def 10.2 Δσ(f)=∑(xj+1−xj)(supf−inff)