Operations of Matrix

Transpose

𝐴𝑇 and (𝐴𝐵)𝑇=𝐵𝑇𝐴𝑇

Conjugate transpose

𝐴𝐻

Determinant

det([𝑎𝑐𝑏𝑑])=𝑎𝑑𝑐𝑏 det([𝑎𝑑𝑔𝑏𝑒𝑐𝑓𝑖])=𝑎(𝑒𝑖𝑓)𝑏(𝑑𝑖𝑓𝑔)+𝑐(𝑑𝑒𝑔)

Properties of Matrix

Rank

  • The rank of a matrix is equal to the number of non-zero rows if it is in Echelon Form.

Types of Matrix

  • Singular, det(𝐴)=0. It’s inverse is not exists.
  • Diagonal, (𝑖,𝑗)𝑖𝑗𝑎𝑖𝑗=0.
  • Tridiagonal, (𝑖,𝑗)|𝑖𝑗|>1𝑎𝑖𝑗=0.
  • Triangular, lower: (𝑖,𝑗)𝑖>𝑗𝑎𝑖𝑗=0; higher: (𝑖,𝑗)𝑖<𝑗𝑎𝑖𝑗=0.
  • Symmetric, 𝐴=𝐴𝑇.
  • Skew-Symmetric, 𝐴=𝐴𝑇.
  • Hermitian, 𝐴=𝐴𝐻.
  • Unitary, 𝐴𝐻𝐴=𝐴𝐴𝐻=𝐼.
  • Normal 𝐴=𝐴𝐻; 𝐴𝐻𝐴=𝐴𝐴𝐻.
  • Defective, Multiplicity 𝑘>1 with fewer than 𝑘 linearly independent corresponding Eigenvectors.
  • Nondefective / diagonalizable, it has 𝑋1𝐴𝑋=𝐷 where 𝑋 is Eigenvectors.

  • Orthogonal matrix, 𝐴𝑇𝐴=𝐴𝐴𝑇=𝐼.
  • Symmetric positive definite matrix (SPD)
  • Band matrix
  • Vandermonde matrix
  • Hessenberg matrix
  • Jacobian matrix
  • Hessian matrix