General
f′(x)≈c1f(x+h)+c2f(x)+c3f(x−h)
by Taylor expansion
f(x+h)=f(x)+hf′(x)+2!h2f′′(x)+⋯+n!hnf(n)(x)
f(x−h)=f(x)−hf′(x)+2!h2f′′(x)−⋯+n!hnf(n)(x)
Forward difference
f′(x)≈hf(x+h)−f(x)=f′(x)+Ch+O(h2)
Center difference
f′(x)≈2hf(x+h)−f(x−h)=f′(x)+Ch2+O(h4)