For shortest walk in weighted DAG.
Pseudo-code
\begin{algorithm}
\caption{Dijkstra}
\begin{algorithmic}
\Function{Dijkstra}{$s$}
\ForAll{vertices $v \in V$}
\State $v.dist \gets \infty$
\EndFor
\State $q \gets$ priorityQueue($\emptyset$)
\State $q.$\Call{Insert}{$s, 0$}
\While{$q$ is not empty}
\State $u \gets$ \Call{ExtractMin}{$q$} \Comment{$O(\log V)$}
\ForAll{edges $u \to v$}
\If{$u \to v$ is tense}
\State \Call{Relax}{$u \to v$} \Comment{update $v.dist$}
\If{$v \in q$}
\State $q.$\Call{DecreaseKey}{$v, v.dist$} \Comment{$O(\log V)$ or $O(1)$ if use Fibonacci heap}
\Else
\State $q.$\Call{Insert}{$v, v.dist$}
\EndIf
\EndIf
\EndFor
\EndWhile
\EndFunction
\end{algorithmic}
\end{algorithm}Runtime
then if we use Fibonacci heap instead of binary heap in queue, it will be
or worst cases(dense graph) /