also just called `Wronskian

๐‘Š(๐‘ฆ1,๐‘ฆ2,โ€ฆ,๐‘ฆ๐‘›)(๐‘ฅ)=|๐‘ฆ1(๐‘ฅ)๐‘ฆโ€ฒ1(๐‘ฅ)โ‹ฎ๐‘ฆ(๐‘›โˆ’1)1(๐‘ฅ)๐‘ฆ2(๐‘ฅ)๐‘ฆโ€ฒ2(๐‘ฅ)โ‹ฎ๐‘ฆ(๐‘›โˆ’1)2(๐‘ฅ)โ‹ฏโ‹ฏโ‹ฑโ‹ฏ๐‘ฆ๐‘›(๐‘ฅ)๐‘ฆโ€ฒ๐‘›(๐‘ฅ)โ‹ฎ๐‘ฆ(๐‘›โˆ’1)๐‘›(๐‘ฅ)|

for example if ๐‘›=2

๐‘Š(๐‘ฆ1,๐‘ฆ2)=|๐‘ฆ1๐‘ฆโ€ฒ1๐‘ฆ2๐‘ฆโ€ฒ2|

then ๐‘ฆ1,โ€ฆ๐‘ฆ๐‘› are linearly independent if and only if ๐‘Š๐‘›=0.
This is important because in solving a linear system of differential equations, we need a fundamental set of linearly independent solutions. This is analogous to solving a system of linear equations, where the system has a unique solution only if the coefficient matrix is invertibleโ€”that is, its determinant is nonzero.